Back to Table of contents

Primeur weekly 2017-10-09

Special

2017 - Another year on the Road to Exascale: The Post-Moore era ...

Focus

Outsourcing your data centre to Verne Global in Iceland reduces costs and benefits climate ...

Draft work programme for 2018 - 2020 of the European Horizon 2020 funding programme shows strong commitment to HPC and exascale with over 450 million euro funding available ...

Exascale supercomputing

IDEAS goes big: Fostering better software development for exascale ...

Assessing regional earthquake risk and hazards in the age of exascale ...

Quantum computing

Bristol scientists pinpoint the singularity for quantum computers ...

New 'building material' points toward quantum computers ...

Focus on Europe

Call now open for ISC 2018 research papers: Submission ends December 22, 2017 ...

Project TopWing published top innovative results in Nature ...

PRACE 15th Call continues to award outstanding research in HPC ...

PRACE met future scientists at EUCYS 2017 ...

Dutch National Big Data Infrastructure will boost pre-competitive research ...

Middleware

Bright Computing rolls out tiered partner programme for resellers in North and South America ...

Hardware

CENATE names new director ...

University of South Dakota gets HPC cluster for research computing ...

Mellanox enables the next generation of software-defined data centre networks with BlueField SmartNIC network adapters ...

Discovery and innovation to quicken with supercomputer's $1-million upgrade ...

Applications

Cell modelling tool makes complex calculations user-friendly ...

Purdue professor wins Department of Defense computing award ...

Columbia researchers observe exotic quantum particle in bilayer graphene ...

MareNostrum supercomputer has allocated 20 million hours of calculation to the Nobel Prize for Physics winning project ...

The world-record 53.3 Tb/s optical switching capacity for data-centre networks ...

Chemists teach computer programme to model forces between atoms accurately ...

The Cloud

New Oracle Exadata X7 delivers in-memory performance from shared storage ...

Oracle unveils world's first autonomous database Cloud ...

Cell modelling tool makes complex calculations user-friendly

Researchers at UConn Health have just released a new version of the Virtual Cell that allows biologists without strong math or computer programming skills to more easily build models and simulate how a cell functions. Credit: Getty Images.3 Oct 2017 Farmington - Programming a molecular biology experiment can be similar to playing Sudoku; both are simple if you're working with only a few molecules or a small grid, but they explode in complexity as they grow. Now, in a paper published on October 3 in theBiophysical Journal, researchers at University of Connecticut (UConn) Health's Virtual Cell Project have made it far easier for cell biologists to build complex biological models.

The Virtual Cell, or VCell as it's known, is a software platform that offers the most comprehensive set of modelling and simulation capabilities for cell biology in the world. It allows biologists without strong math or computer programming skills to build models and simulate how a cell functions. VCell first came online almost 20 years ago, in 1998, and the UConn Health team headed by UConn Health biophysicist Leslie Loew has developed and maintained it since. Using VCell, a biologist can predict what happens when a certain drug encounters a filtration cell in the kidney, for example, or how a hemoglobin molecule in a red blood cell deals with a spike in carbon dioxide.

But until now, a biologist still needed strong programming skills to do detailed cell models at the molecular level, and even more than that, patience. Each molecule involved in a model has a certain number of states, or things it can do and places it can be. Each possible combination of molecules and their states had to be coded out by hand. And as the number of moving parts increases, the number of lines of computer code do, too. If you increase the size of a Sudoku grid to nine by nine, you suddenly have 6.7 sextillion possible scenarios and you get an idea of the nightmare molecular biologists faced when they tried to code even a slightly complex biological system. The common name for this problem is a "combinatorial explosion", and the solution to it, called "rule-based modelling", was developed 12 years ago by VCell team member Michael Blinov and colleagues James Faeder and William Hlavacek, who all worked during that time at Los Alamos National Laboratory.

However, every modeller using rule-based modelling faced a complication. The programme detailing interactions among molecules had to be written out in text. In this age of iPhones and computers you can navigate with swipe and click, everyone expects a computer to have a gorgeous graphic interface. Until now, using rule-based modelling wasn't like that. It looked more like the text command boxes you can call up if you need to navigate the guts of your machine quickly. But it gets tiresome fast, and catching mistakes in thousands of lines of repetitive, almost-but-not-quite-identical code can be maddening. Cell biology models quickly get so unwieldy that only an experienced modeller or programmer can handle them. This sharply limited who could use such modelling.

"Before, only programmers or experienced modellers could create rule-based models to describe details of molecular interactions", stated Leslie Loew. "We wanted to make rule-based modeling available to the cell biologists who really need it."

Leslie Loew and the VCell team of Michael Blinov, Ion Moraru, James Schaff, and Dan Vasilescu decided to make things easier. In their new paper , they describe a user interface for VCell that uses coloured shapes to represent molecules. The shapes look a bit like coloured bricks. Bubbles show binding sites, and lines show links between molecules. The links can also be different colours and shapes to represent different interactions. A simple model describing hemoglobin resembles a map or wiring diagram.

Instead of writing thousands of lines of code, biologists using VCell can now just define their molecules and explain to VCell how they can interact with each other. The biologist doesn't have to worry about the combinatorial explosion. The computer - all 60 teraflops, 3000 processors, and 2 petabytes of storage hosted at UConn Health's Cell and Genome building - handles it.

Leslie Loew and Michael Blinov believe the new version of VCell will dramatically expand the number of people who can use rule-based modelling. This is because it allows scientists to use the comprehensive set of simulation methods available in VCell with rule-based models in a single, unified, user-friendly software environment.

Now, a trained biologist should be able to take a day to go through the tutorials on the site and learn enough to figure out how to model a new problem on VCell. Previously, there were about 5800 active users of VCell globally - you can log in from anywhere that has an internet connection. Those modellers had created 76,600 models and run about 479,000 different simulations on them. These simulations test everything from whether a certain mutation causes cancer to how a new drug might interact with the heart. And with the newly released version of VCell, the number of active users should increase.

So far, VCell hasn't helped with a Sudoku game. But someone might just write a model for that.

VCell has been supported through the years by various grants from the National Institutes of Health (NIH) and the National Science Foundation (NSF), and is currently supported by a "Biomedical Technology Research Resource" grant from the National Institute of General Medical Science at NIH.
Source: University of Connecticut

Back to Table of contents

Primeur weekly 2017-10-09

Special

2017 - Another year on the Road to Exascale: The Post-Moore era ...

Focus

Outsourcing your data centre to Verne Global in Iceland reduces costs and benefits climate ...

Draft work programme for 2018 - 2020 of the European Horizon 2020 funding programme shows strong commitment to HPC and exascale with over 450 million euro funding available ...

Exascale supercomputing

IDEAS goes big: Fostering better software development for exascale ...

Assessing regional earthquake risk and hazards in the age of exascale ...

Quantum computing

Bristol scientists pinpoint the singularity for quantum computers ...

New 'building material' points toward quantum computers ...

Focus on Europe

Call now open for ISC 2018 research papers: Submission ends December 22, 2017 ...

Project TopWing published top innovative results in Nature ...

PRACE 15th Call continues to award outstanding research in HPC ...

PRACE met future scientists at EUCYS 2017 ...

Dutch National Big Data Infrastructure will boost pre-competitive research ...

Middleware

Bright Computing rolls out tiered partner programme for resellers in North and South America ...

Hardware

CENATE names new director ...

University of South Dakota gets HPC cluster for research computing ...

Mellanox enables the next generation of software-defined data centre networks with BlueField SmartNIC network adapters ...

Discovery and innovation to quicken with supercomputer's $1-million upgrade ...

Applications

Cell modelling tool makes complex calculations user-friendly ...

Purdue professor wins Department of Defense computing award ...

Columbia researchers observe exotic quantum particle in bilayer graphene ...

MareNostrum supercomputer has allocated 20 million hours of calculation to the Nobel Prize for Physics winning project ...

The world-record 53.3 Tb/s optical switching capacity for data-centre networks ...

Chemists teach computer programme to model forces between atoms accurately ...

The Cloud

New Oracle Exadata X7 delivers in-memory performance from shared storage ...

Oracle unveils world's first autonomous database Cloud ...