Back to Table of contents

Primeur weekly 2019-09-09

Quantum computing

New quantum project aims for ultra-secure communication in Europe ...

Schrödinger and Qu & Co announce collaboration to advance quantum mechanical computations on quantum computers ...

Spreading light over quantum computers ...

Focus on Europe

AUBASS' AUTOSAR Adaptive Platform solution ported on Kalray's intelligent processor ...

eScience Center takes part in hackathon to improve tools for analysis of internet therapies ...

At the edge of chaos, powerful new electronics could be created ...

Middleware

2CRSI becomes a Bright reseller in the USA, Europe and Middle East ...

NERSC and ECP host OpenMP Hackathon for energy-efficient architectures ...

Hardware

Shell and PDENH are investing in Dutch sustainable data centre technology scale-up Asperitas ...

Konstantinos Orginos awarded time on world's fastest supercomputer to study Lattice QCD ...

GRC teams with NVIDIA to provide fully optimized liquid-immersion cooled system to support the Texas Advanced Computing Center's Frontera supercomputer ...

Mellanox introduces new LinkX 200G & 400G cables & transceivers at CIOE, Shenzhen, China and ECOC, Dublin, Ireland 2019 ...

Texas boosts U.S. science with fastest academic supercomputer in the world ...

New insulation technique paves the way for more powerful and smaller chips ...

WekaIO awarded three patents ...

Intel Xeon Scalable processors drive advanced research in world's fastest academic supercomputer ...

Applications

Rochester Institute of Technology researchers use Frontera supercomputer to simulate neutron star mergers ...

Researchers use TACC's new Frontera supercomputer to simulate viruses and cells ...

Teaching Neural Networks Quantum Chemistry ...

Building a sunnier energy future ...

Researchers apply increasing computational power to develop predictive models and create patient-specific treatment plans ...

Researchers will simulate high speed turbulent flows on Frontera supercomputer ...

U.S. National Science Foundation awards San Diego Supercomputer Center and partners $5,9 million to host EarthCube Office ...

Researchers uncover role of earthquake motions in triggering a 'surprise' tsunami ...

Artificial Intelligence for Physics Research ...

NCSA machine learning pipeline provides insight into energy-efficient home improvement programmes ...

Eight projects to gain early access to the Frontier supercomputer ...

New Berkeley Lab study uses supercomputers to analyze hydrological changes in a California watershed following a wildfire ...

PPG selected for DOE partnership to speed development, testing of adhesives for lightweight vehicles ...

Sum of three cubes for 42 finally solved - using real life planetary computer ...

Building a sunnier energy future


A cover figure from the July issue of the Journal of Polymer Science, based on research from Ganesh Balasubramanian's group.
3 Sep 2019 Austin - Solar photovoltaics have shown great potential in the past few decades. In addition to today's silicon-based solar materials, researchers are exploring organic polymer materials, which have shown promise due to their remarkable ability to transform light into energy at a lower cost.
Left to right: Joydeep Munshi, Ganesh Balasubramanian and Ankit Roy.

Ganesh Balasubramanian, an assistant professor of Mechanical Engineering and Mechanics at Lehigh University, was among the early users of Frontera - the fastest academic supercomputer in the world - studying the dynamics of organic photovoltaic materials. Actively collaborating with experimentalists, he is working to develop efficient ways to create next generation flexible solar photovoltaics that can exceed the energy-producing potential of today's devices.

Using simulations, Ganesh Balasubramanian tries to replicate an actual experiment by virtually mimicking a particular physical system. Doing so allows him to understand the forces at play on an atomic level.

"Our work involves simulation of solvent evaporation processes found in a typical spin coating experiment", Ganesh Balasubramanian stated. "In order to compare results from atomistic simulations with images produced during experiments, large-scale computations are required."

His typical simulations contain over one hundred million superatoms - a cluster of atoms that exhibit some of the properties of elemental atoms, and replicate the physical movements and interactions among these superatoms.

"Understanding the morphology of these large-scale simulations would help us correlate the structure, properties, and performance of organic photovoltaics", he stated.

Alongside these large simulations, Ganesh Balasubramanian also performs computations to optimize the design variables in order to improve specific properties. "These require enormous computing efforts across several compute nodes, and supercomputing system like Frontera are the best choice for this purpose", he stated.

Ganesh Balasubramanian previously used compute clusters at his university, as well as those hosted by the Department of Defense through their High Performance Computing Modernization Programme.

"We hope to harness Frontera's ultrafast computational capabilities to accelerate our search for better organic photovoltaics", he stated. "With some of our initial simulations on Frontera, we have been able to improve by a factor of four to five, in terms of computing speed."

Whereas a simulation of 100.000 atoms and few million timesteps would be carried out at the rate of 100 timesteps per second on a normal supercomputer, on Frontera, Ganesh Balasubramanian has achieved speeds of approximately 500 timesteps per second.

Ganesh Balasubramanian's students visited TACC in the spring and met with Kent Milfeld from TACC's High Performance Computing team in anticipation of using Frontera.

"This trip proved to be very beneficial for us and helped us better understand the functioning of the supercomputer and ways to harness the best computational performance", stated Joydeep Munshi, a graduate research assistant in Ganesh Balasubramanian's lab.

"We learned about available MPI stacks and how to tune MPI and hybrid - MPI+OpenMP - applications via environment variables", Joydeep Munshi stated. "We were also informed about several applications such as Lammps, Gromacs, and VASP, which are relevant to our research and will be available on Frontera nodes."

Using the fastest academic supercomputer in the world fills Ganesh Balasubramanian with a sense of privilege as a researcher. "The lightning speed at which Frontera performs computations is very beneficial in terms of saving time", he stated. "Overall, the entire pace of computational research will be increased by the arrival of Frontera."

This research is supported by the NSF Division Of Civil, Mechanical, & Manufacturing Innovation, within the NSF Directorate for Engineering under Award #1753770: Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function.
Source: University of Texas at Austin, Texas Advanced Computing Center - TACC

Back to Table of contents

Primeur weekly 2019-09-09

Quantum computing

New quantum project aims for ultra-secure communication in Europe ...

Schrödinger and Qu & Co announce collaboration to advance quantum mechanical computations on quantum computers ...

Spreading light over quantum computers ...

Focus on Europe

AUBASS' AUTOSAR Adaptive Platform solution ported on Kalray's intelligent processor ...

eScience Center takes part in hackathon to improve tools for analysis of internet therapies ...

At the edge of chaos, powerful new electronics could be created ...

Middleware

2CRSI becomes a Bright reseller in the USA, Europe and Middle East ...

NERSC and ECP host OpenMP Hackathon for energy-efficient architectures ...

Hardware

Shell and PDENH are investing in Dutch sustainable data centre technology scale-up Asperitas ...

Konstantinos Orginos awarded time on world's fastest supercomputer to study Lattice QCD ...

GRC teams with NVIDIA to provide fully optimized liquid-immersion cooled system to support the Texas Advanced Computing Center's Frontera supercomputer ...

Mellanox introduces new LinkX 200G & 400G cables & transceivers at CIOE, Shenzhen, China and ECOC, Dublin, Ireland 2019 ...

Texas boosts U.S. science with fastest academic supercomputer in the world ...

New insulation technique paves the way for more powerful and smaller chips ...

WekaIO awarded three patents ...

Intel Xeon Scalable processors drive advanced research in world's fastest academic supercomputer ...

Applications

Rochester Institute of Technology researchers use Frontera supercomputer to simulate neutron star mergers ...

Researchers use TACC's new Frontera supercomputer to simulate viruses and cells ...

Teaching Neural Networks Quantum Chemistry ...

Building a sunnier energy future ...

Researchers apply increasing computational power to develop predictive models and create patient-specific treatment plans ...

Researchers will simulate high speed turbulent flows on Frontera supercomputer ...

U.S. National Science Foundation awards San Diego Supercomputer Center and partners $5,9 million to host EarthCube Office ...

Researchers uncover role of earthquake motions in triggering a 'surprise' tsunami ...

Artificial Intelligence for Physics Research ...

NCSA machine learning pipeline provides insight into energy-efficient home improvement programmes ...

Eight projects to gain early access to the Frontier supercomputer ...

New Berkeley Lab study uses supercomputers to analyze hydrological changes in a California watershed following a wildfire ...

PPG selected for DOE partnership to speed development, testing of adhesives for lightweight vehicles ...

Sum of three cubes for 42 finally solved - using real life planetary computer ...